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A B S T R A C T

Uplift of the Tibetan Plateau and the distribution of deformation across it are the result of India-Asia collision,
which bring an opportunity of understanding intracontinental tectonics in the context of continent-continent
collision. The Tibetan Plateau is bound on the northern margin by the Qilian Shan thrust belt and the strike-slip
Haiyuan fault. These Cenozoic fault systems play a critical role in accommodating continental convergence, yet
the initiation age, deformation sequence and mechanisms of deformation are debated. In this study, integrated
geologic mapping, field observations, and apatite fission track thermochronology were conducted to constrain
the initiation ages of the localized thrust faults and the exhumation history of the central and northern Qilian
Shan, northern Tibet. Our analyses reveal the central and northern Qilian Shan underwent rapid cooling during
the Cretaceous as a result of a far-field tectonic event. In the Eocene-Oligocene, a period of thrust-related cooling
occurred along the Shule Nan Shan, Tuolai Nan Shan and Tuolai Shan faults. Reactivation of the proximal thrust
faults and initiation of the western segment of the Haiyuan fault occurred at ca. 16 Ma and drove final ac-
celerated Miocene cooling and denudation to the surface. We argue that the Qilian Shan thrust belt has persisted
as the stationary and internally deformed northern boundary of the Himalayan-Tibetan orogen since the early
Cenozoic, involved overprinting out-of-sequence development starting by Eocene related to initiation of India-
Asia collision, and the basins and ranges across the northern Tibetan Plateau have since experienced multi-phase
of growth.

1. Introduction

The most significant consequence of India-Asia continental collision
is the formation of Himalayan-Tibetan orogen and related Tibetan
Plateau (Yin and Harrison, 2000; Yin, 2006, 2010; Royden et al., 2008;
Wang et al., 2014) (Fig. 1A). Despite decades of research focused on the
evolution of the Tibetan Plateau, the spatial-temporal distribution,
timing and mechanism of upward and outward growth, and its impact
on global climate are still debated (Raymo and Ruddiman, 1992; Meyer
et al., 1998; Clark, 2012; Hough et al., 2011; Molnar et al., 1993, 2010;
Royden et al., 2008; Tapponnier et al., 2001; Wang et al., 2008, 2014;
Lin et al., 2016). Addressing the questions of how and when the Tibetan
Plateau reached its modern elevation and extent can help us understand
processes of continental deformation and plateau construction
(Burchfiel et al., 1991; Tapponnier et al., 2001; Wang et al., 2008; Yin,

2010; Clark, 2012; Wang et al., 2016a, 2016b; Zuza et al., 2016a).
The northeastern margin of the Tibet Plateau is defined by the 350-

km-wide, 1300-km-long active Qilian Shan thrust belt (e.g., Meyer
et al., 1998; Yin and Harrison, 2000; Zuza et al., 2018) (Fig. 1). The
Cenozoic tectonic evolution of these fault systems is critical to under-
standing the kinematics and mechanisms of plateau development. At
the northeastern plateau margin, crustal thickening and active short-
ening are distributed across a wide region extending from the left-slip
Kunlun fault in the south to the Hexi Corridor. The Cenozoic Qilian
Shan thrust belt is commonly recognized as the northeastward growth
front of the Tibetan Plateau (Tapponnier et al., 2001; Zheng et al.,
2017), but precise age estimates for the initiation of its structures, and
the style and mechanisms of range growth are poorly resolved. Various
data sets suggest the Qilian Shan thrust belt experienced Eocene
shortening shortly after India-Asia plates collision (e.g., Dupont-Nivet
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et al., 2004; Clark et al., 2010; Duvall et al., 2011; Clark, 2012; Yuan
et al., 2013; Qi et al., 2016; Yu et al., 2017; Zhuang et al., 2018; An
et al., 2020), but exposures of extensive thrust-fault-bounded Neogene-
Quaternary basins and a strong ca. 15 Ma low-temperature thermo-
chronology cooling signal suggest many of the present-day ranges are
associated with middle to late Miocene shortening and exhumation
(Fang et al., 2005; Zheng et al., 2006, 2010, 2017; Lease et al., 2012a,
2012b, 2007; Craddock et al., 2011; Hough et al., 2011; Zhang et al.,
2012; Zhuang et al., 2011; Duvall et al., 2013; Yuan et al., 2013; Zuza
et al., 2018; Li et al., 2019; Yu et al., 2019). The relatively low erosion
rates and limited exhumation magnitude in northern Tibet hinders
applications of thermochronology to systematically document fault
activity (e.g., Zuza et al., 2019), leading to an incomplete kinematic
framework for the northern Tibet.

To address the above issue and explore the spatial-temporal re-
lationships between Eocene and Miocene to present deformation, we
have conducted systematic geologic mapping, field observations, and
apatite fission track (AFT) thermochronology across the central and
northern Qilian Shan. We focused on pre-Cenozoic bedrock and
Miocene sediments in fault-bounded ranges and basins, respectively, to
elucidate the cooling history of this region. We document a complex
history of overprinting thrust and strike-slip faulting since the early
Cenozoic and present a kinematic model of the evolution of the
northern Tibetan Plateau. We argue the Qilian Shan thrust belt pro-
gressed via out-of-sequence deformation starting in the Eocene, and the
basins and ranges across the northern Tibetan Plateau have since ex-
perienced multiple phases of growth.

2. Regional geology

The Qilian Shan thrust belt, presently located > 1500 km north of
the Himalayan collision front, defines the modern northeastern margin
of the Tibetan Plateau between the Hexi Corridor to the north and the
Qaidam Basin to the south, respectively (Fig. 1). The thrust belt ex-
perienced a complex tectonic history, including Neoproterozoic mag-
matism and deformation (Wu et al., 2017; Zuza et al., 2018), early
Paleozoic orogeny (e.g., Xiao et al., 2009; Song et al., 2013, 2017; Zuza
et al., 2018), Jurassic–Cretaceous extension with postulated Early
Cretaceous contraction (e.g., Chen et al., 2003, 2004, 2019a; Yin et al.,
2008a, 2008b; Zuza et al., 2016a, 2018), and Cenozoic deformation
consisting of folding, thrusting, and strike-slip faulting to accommodate
far-field India-Asia convergence (Tapponnier et al., 2001; Duvall et al.,
2013; Yuan et al., 2013; Li et al., 2019).

2.1. Pre-Cenozoic tectonic evolution

Prior to the Cenozoic, the northeastern Tibetan Plateau experienced
the early Paleozoic Qilian Orogen, which resulted from the Ordovician-
Silurian closure of the Qilian Ocean(s) (e.g., Yin and Nie, 1996; Yin and
Harrison, 2000; Gehrels et al., 2003a; Yin et al., 2007a, 2007b; Song
et al., 2013, 2017; Wu et al., 2017; Zuza et al., 2018) during progressive
southward/bi-directional subduction and related arc magmatism (e.g.,
Cowgill et al., 2003; Gehrels et al., 2003a, 2003b; Su et al., 2004; Hu
et al., 2005; Wu et al., 2006, 2010; Liu et al., 2006; He et al., 2007;
Tseng et al., 2009; Xia et al., 2012; Xiong et al., 2012; Song et al., 2013;
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Fig. 1. (A) Map of the Himalayan-Tibetan orogen with the location of Fig. 1B. (B) Tectonic map of the northern Tibet and the primary Cenozoic faults with the
location of detailed geologic map (Fig. 2). Cenozoic structures are from Taylor and Yin (2009), Duvall et al. (2013), and Zuza and Yin (2016). (C) Published
thermochronology data (shown with green stars) of major Cenozoic structures across northern Tibet. Figure is modified from Duvall et al. (2013), Yuan et al. (2013),
Zuza et al., (2019) and Wu et al. (2019a, 2019b). Cooling ages come from a variety of sources discussed in the text. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Wu et al., 2016; Zuza et al., 2018; Chen et al., 2019b). Ultimate con-
tinental collision resulted in three suture zones (i.e., the North, Middle
and South Qilian suture zones, Song et al., 2017, 2019) although these
dismembered exposures may be subsequently duplicated by the Cen-
ozoic shortening (Yin et al., 2007b; Zuza et al., 2018). This orogen,
composed of Neoproterozoic to Early Paleozoic ophiolitic mélange,
Ordovician–Silurian volcanic rocks and granitoid plutons, Silurian
turbidite sequence, Devonian conglomerate, and post-orogenic Carbo-
niferous to Triassic marine sediments makes up the majority of bedrock
of the modern Qilian Shan.

The Qilian Shan experienced Jurassic-early Cretaceous regional
extension (e.g., Chen et al., 2003, 2004; Yin et al., 2007a; He et al.,
2019), and deposition of Jurassic-Cretaceous terrestrial sedimentation
along east-trending extensional and transtensional structures (e.g.,
Vincent and Allen, 1999; Chen et al., 2003, 2004; Yin et al., 2008b;
Zuza et al., 2018; He et al., 2019). This area may have underwent a
pulse of Early Cretaceous contractional deformation, which resulted in
the onset of thrusting and development of growth strata in northern
Tibet (Chen et al., 2019a; He et al., 2019). Previous low-temperature
thermochronology studies have revealed this Early Cretaceous pulse of
exhumation that may be related to the localized shortening (e.g.,
Jolivet et al., 2001; Qi et al., 2016; Li et al., 2019).

2.2. Cenozoic structures and range growth

The Cenozoic Qilian Shan thrust belt is comprised of thrust and
strike-slip faults, which have accommodated India-Asia convergence at
the northeast margin of the Tibetan Plateau (Vincent and Allen, 1999;
Tapponnier et al., 2001; Yin et al., 2007a, 2008a, 2008b; Duvall et al.,
2013; Yuan et al., 2013; Zuza and Yin, 2016; Zuza et al., 2016a; Li et al.,
2019). Cenozoic deformation and range growth in the southern Qilian
Shan and the North Qaidam thrust belts, locally initiated by 50–40 Ma
shortly after the India-Asia collision (e.g., Jolivet et al., 2001; Spurlin
et al., 2005; Jiang et al., 2008; Wang et al., 2008; Zhuang et al., 2011;
Qi et al., 2016). Deformation appears to have propagated nearly si-
multaneously northward to the northern Qilian Shan and southward to
the Qimen Tagh thrust belts starting in the early Miocene (George et al.,
2001; Jolivet et al., 2001; Dupont-Nivet et al., 2004; Yin et al., 2008a,
2008b; Duvall et al., 2011; Yuan et al., 2013; Zheng et al., 2017; Li
et al., 2019; An et al., 2020). This pulse of Miocene accelerated regional
deformation across the Qilian Shan resulted in the development of
major thrust and strike-slip faults (e.g., Zheng et al., 2006, 2010, 2017;
Duvall et al., 2013; Yuan et al., 2013; Zuza and Yin, 2016; Allen et al.,
2017; Li et al., 2019; Yu et al., 2019) (Fig. 1). Miocene deformation was
accompanied by related rapid exhumation and range growth and the
formation of a major geomorphic boundary between the plateau and its
northern foreland in northern Tibetan Plateau.

Drawing from earlier models of northward propagation of the
Tibetan Plateau (e.g., England and Houseman, 1986; Tapponnier et al.,
2001), this recent pulse of Miocene range exhumation has been related
to a simple northward progression of thrust-system development in the
northern Tibet (e.g., Zheng et al., 2010, 2017; Su et al., 2019; Yu et al.,
2019). However, existing evidence for early Cenozoic deformation,
including Eocene-Oligocene cooling ages distributed across the Qilian
Shan and localized early Cenozoic basin strata (e.g., Dai et al., 2005,
2006; Yin et al., 2008a, 2008b; Zhuang et al., 2011; Clark, 2012; Qi
et al., 2015, 2016; Yu et al., 2017; He et al., 2018; Jia et al., 2018;
Cheng et al., 2019a, 2019b), suggests a more complex evolution his-
tory. We focus this study on the central and northern parts of the Qilian
Shan thrust belt, where our new observations provide valuable insight
on kinematic models in the northern Tibet of either progressive
northward range growth or multi-phase overprinting exhumation since
the early Cenozoic. The study area consists of four major west-trending
ranges: the Shule Nan Shan, Tuolai Nan Shan, Tuolai Shan and North
Qilian Shan ranges, from south to north, respectively (Fig. 2).

2.3. Structural geology

Structures in the Qilian Shan primarily trend northwest, expressed
by the strike of major range-bounding faults and folds, and overall trend
of the dominant ranges. A mylonitic gneiss complex exposed in the
hanging wall of the Shule Nan Shan, Tuolai Nan Shan, and Tuolai Shan
thrust faults also has northwest-striking foliations. The protolith of the
gneiss is Proterozoic, and the complex was an Ordovician shear zone
during the early Paleozoic Qilian orogen, as dated by crosscutting in-
trusions and in-situ monazite dating (Zuza et al., 2018). Brittle faults
and folds within this complex merge with structures cutting younger
Paleozoic-Mesozoic stratigraphy and present-day range-bounding
thrusts. Accordingly, we interpret that most of the observed contrac-
tional structures are Cenozoic in age, although they may reactivate
older early Paleozoic structures. In some localities, Paleozoic-Mesozoic
strata are thrusted over Cenozoic terrestrial sediments (Fig. 3A–C).

Muli basin, which is enriched with Triassic-Jurassic coal, bounds the
southeastern of the Tuolai Nan Shan (Fig. 2). Here, we observe Eocene
strata thrust over Neogene sandstone (Fig. 3D). The Qilian Shan has a
broad planation surfaces at 3000–3200 m, indicative of tectonic uplift
of the Tibetan Plateau (Cui et al., 1997; Li and Fang, 1999; Zhou et al.,
2006; Jia et al., 2018). Planation surface developed on the top of tilted
Eocene red-beds in the north of Muli basin, and were later incised by
Datong River (Fig. 3E). In Suli Basin, reddish brown Miocene sediments
are tilted northeast with dip of 25° (Figs. 2, 3F).

The east-striking left-slip Haiyuan fault is geometrically and kine-
matically connected with the central Qilian Shan thrust belt to the west
(Figs. 1, 2) (Cheng et al., 2015; Zuza et al., 2016b, 2018; Li et al., 2019).
Specifically, the western segment of the Haiyuan fault, transferring into
the Shule Nan Shan thrust system, is located within our study region,
where strike-slip displacement appears to transfer into primarily dip-
slip thrust faulting (Fig. 2). We observed from satellite images that the
western Haiyuan fault termination is a relatively active structure, cut-
ting and offsetting Quaternary alluvial fans (Fig. 4).

3. Methods

Low-temperature thermochronology enables quantification of the
timing and rates at which rocks cool and approach the surface during
exhumation, which can be interpreted to constrain the cooling history
and timing of major fault activity (e.g., Dodson, 1973; Clark et al.,
2010; Zheng et al., 2010, 2017; Curry et al., 2016; Li et al., 2019; Yu
et al., 2019). The AFT dating method is based on crystallographic da-
mage trails due to the constant-rate spontaneous nuclear fission of trace
levels of 238U in apatite grains (e.g., Wagner, 1968; McDannell et al.,
2019). Crystal damages in apatite are incompletely annealed through
the partial annealing zone (PAZ, Gleadow, 1981; Ketcham et al., 2007)
in between the temperature zone of ~60–110 °C. The thermal history
that a rock sample has experienced through the PAZ can be reflected by
track length distribution.

During deformation, rocks at originally different structural levels
will exhume toward the surface and thus cool at different rates, de-
pending on their relationships to major structures. Thermochronologic
analysis of minerals from bedrock samples thus requires careful con-
sideration of the structures that are responsible for cooling, especially
when interpreting different cooling signals. Fission track analysis on
detrital apatite grains from basin sediments is a commonly used method
for reconstructing and quantifying the long-term exhumation history
and trace their deposits age variation. Applying AFT dating on in-situ
bedrock samples and detrital basin sediments allows for complete
evaluation of source area's thermal evolution and exhumation history.

In this study, we conducted two broad sampling traverses across
major thrust structures near the western segment of the Haiyuan fault
across the central and northern Qilian Shan (Fig. 2). Previous low-
temperature thermochronology study in this region derived Early Cre-
taceous and late Miocene rapid cooling ages, which reflect relatively
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limited exhumation and long residence in PAZ (e.g., Zheng et al., 2017;
Zuza et al., 2016b; Yu et al., 2019). We collected and analyzed eighteen
AFT samples as part of two different sampling approaches: (1) fifteen
in-situ bedrock samples from hanging wall and footwall of major range-
bounding thrust faults, respectively; and (2) three detrital sedimentary
samples collected from Cenozoic sediments in the Suli Basin. For our
bedrock samples, we describe the hanging wall and footwall samples
separately because of their different structural positions and they yield
significantly distinct age populations. Rock samples consist of Cam-
brian-Ordovician granite and granodiorite (Wu et al., 2017), Mesozoic
sandstone, and Miocene sediments. Detailed lithology and location in-
formation of each sample are presented in Table 1.

3.1. AFT analysis

Apatite grains in this study were separated from whole-rock samples
using standard magnetic and heavy-liquid separation methods at the
Hebei Institute of Geology and Mineral Resources in China. Apatite
grains were first mounted in epoxy resin on glass slides and then po-
lished to expose the internal grain surface. Spontaneous tracks in the
apatite grains were revealed by etching using 5.5% HNO3 for 20s at
21 °C. Low-uranium (< 4 ppb) muscovite grains as external track de-
tectors were packed together with apatite grain mounts and CN5 ur-
anium glass dosimeters were irradiated in the well thermalized hot-
neutron flux in the 492 Swim-Pool nuclear reactor at China Institute of
Atomic Energy, Beijing. Muscovite detectors were taken off and etched
in 40% HF for 20 m at 25 °C to reveal the induced fission tracks (Yuan
et al., 2003). Track densities for both spontaneous and induced fission

Fig. 3. Field photographs from the central and
northern Qilian Shan. (A–C) South-directed thrust
faults place Triassic/Jurassic strata over Neogene
sediments; photo was taken at TL1 in Fig. 2. (D)
Southdirected thrust faults placed Eocene strata over
Neogene sediments. (E) Planation surface developed
on the top of tilted Eocene strata; photo was taken at
ML1 in Fig. 2. (F) Tilted Miocene sediments in Suli
Basin with samples location; photo was taken at SL1
in Fig. 2.

Fig. 4. Northward-looking view of Shule Nan Shan
rangefront; image from Google Earth. Yellow arrows
point to a thrust fault bounding the range that
crosscuts active alluvial fans. This thrust system re-
presents the western termination of the left-slip
Haiyuan fault. See Fig. 2 for location. (For inter-
pretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)
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tracks were measured with a dry objective magnification. All ages were
calculated using zeta calibration approach (Hurford, 1990) with a zeta
value of 391 ± 17.8 for CN5.

The chi-square (χ2) test was used to detect the probability of all
analyzed age grains belonging to a single population (Galbraith, 1981).
If single grain ages have χ2 test results of < 5%, the sample is an
asymmetric spread of single-grain ages. Accordingly, a conventional
analysis based on the Poisson-variation (Green, 1981) is invalid and the
central age is clearly not appropriate for mixed populations, in that it
provides only an average age for all grains. The method of binomial
“peak-fitting” by Galbraith and Green (1990) and Galbraith and Laslett
(1993) was applied by RadialPlotter program (Vermeesch, 2009) to
decompose the AFT singe grain age into a radial plot of component

distributions, and to interpret the results using the average ages for
those components.

To define the chemical composition of the apatite affecting the
characteristics of the annealing process, we also measured the max-
imum diameter of fission track etch pit parallel with crystallographic C-
axis (Dpar). Horizontal confined fission track lengths were measured on
a cylinder with parallel C-axis (Green et al., 1986).

3.2. Thermal modeling

Thermal history modeling of the bedrock samples was conducted
using the HeFTy program (Ketcham, 2005) considering the fission-track
parameters and the geological background. The inversion models were

Table 1
Summary of AFT samples.

Sample ID Lat.
(°N)

Long.
(°E)

Elevation
(m)

Geologic time Description

Samples from foot wall of bedrock
LB150912-3 38°42′26.0″ 98°38′59.5″ 3589 Ordovician Granite
LB150912-4 38°41′49.4″ 101°50′20.9″ 3546 Ordovician Granite
LB150912-7 38°38′23.1″ 99°20′08.4″ 3488 Cambrian Granite

Samples from hanging wall of bedrock
CQL2016-146(1) 38°46′15.6″ 99°27′39.9″ 2708 Triassic Sandstone
B155-1 37°42′11.2″ 101°54′22.8″ 4332 Ordovician Granodiorite
B156-1 37°49′34.9″ 102°00′39.7″ 4382 Ordovician Granodiorite
B157-1 37°38′28.0″ 101°50′16.6″ 4368 Ordovician Granite
B163-1 37°44′01.4″ 101°56′00.8″ 4344 Ordovician Granite
LB150914-4 38°07′23.4″ 100°11′28.5″ 3128 Ordovician Granite
LB150912-2 38°45′57.0″ 98°37′40.8″ 3712 Ordovician Granite
CQL2017-L5-2 38°12′50.7″ 100°08′55.8″ 2791 Cretaceous Sandstone
SQL2017-216(1) 38°22′58.9″ 99°27′16.3″ 3364 Ordovician Gabbro
LB150915-1 38°22′44.7″ 99°26′58.5″ 3401 Ordovician Diorite
WQL2017-170(1) 38°17′14.4″ 99°18′03.4″ 3877 Ordovician Granite
WQL2017-163(1) 38°23′5.9″ 99°23′54.5″ 3819 Ordovician Granite

Samples from detrital sedimentary rocks
B1228-1 38°39′03.2″ 98°06′13.5″ 3760 Miocene Sandstone
B1228-4 38°39′03.2″ 98°06′13.5″ 3764 Miocene Sandstone
B1228-5 38°39′03.2″-13.2″ 98°06′13.5″ 3768 Miocene Sandstone

Table 2
Thermal history model input table for simulations of central and northern Qilian Shan apatite fission track data.

1. Apatite fission track data
Samples and data used in simulations

Data type Data source

AFT singe grain ages and individual
track lengths

This study (Supplemental File, Tables S1
and S2)

Data treatment, uncertainties, and other relevant constraints
Treatment: each of bedrock samples was conducted as a separated constraint in HeFTy
Error (Ma) applied in modeling: the 1σ sample standard deviation of each sample was applied

2. Additional geologic information

Assumption Explanation and source
Initial condition begin at high temperature of 160–200 °C Available AFT data indicated complete apatite annealing at this high temperature
AFT ages was set through the apatite PAZ temperature range of 60–110 °C The AFT system is especially sensitive to this temperatures range (~60–110 °C, Gleadow and Duddy,

1981)
At surface temperature of 20 ± 5 °C by 0 Ma Average surface temperature is endmember minimum estimate.
Note: deposit age was used as the initial condition at the surface temperature for sample CQL2017-L5-2.

3. System-and model-specific parameters

Modeling Code: HeFTy v1.9.1
FT annealing model: Multi-kinetic annealing model of Ketcham et al. (2007); the Dpar values and the angle with C-axis parameters were applied
Statistical fitting criteria: GOF values > 0.05 for accepted fit; GOF values > 0.5 for good fit;
Number of t-T paths attempted: 10000 for each sample
t-T path characteristics: reheating allowed after AFT age.
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run with single grain ages and observed track lengths for each sample.
Goodness-of-fit (GOF) value was used to estimate how well the modeled
data fit measured values (Ketcham, 2005). The thermal history model
inputs for simulations are in Table 2 (Flowers et al., 2015).

4. Results and Interpretations

4.1. Apatite fission track results

The results of AFT analyses from bedrock samples are shown in
Table 3, including AFT age, track length, and Dpar information. AFT
ages from fifteen bedrock samples spread in range from 116 ± 6 Ma
(sample LB150912–4) to 11 ± 1 Ma (sample WQL2017-163(1)). All
the analyses are significantly younger than their respective crystal-
lization or depositional ages (Table 1). Results from nine of the bedrock
AFT samples passed the chi-square test (P (χ2) > 5%; Fig. 5A) and six
of the bedrock samples (i.e., LB150912-7, B155-1, B157-1, LB150914-4,
SQL2017-216(1) and LB150915-1; Table 3) failed the chi-square test (P
(χ2) < 5%; Galbraith and Green, 1990). On single grain radial plots,
four of these samples have age dispersions ≤ 21%, which suggests the
age dispersion are possibly caused by some single discordant grain ages
(Fig. 5B), rather than multiple AFT age populations. For the two sam-
ples with age dispersion of 39% and 42%, respectively, the age dis-
persion may result from (1) existing strongly annealed and shortened
fission tracks causing difficulties in accurate identification of these
tracks (e.g., Gleadow et al., 1986; Green, 1988; Lin et al., 2011; An
et al., 2020) and/or (2) chemical composition variation of apatite
grains in a single sample (e.g., Galbraith and Laslett, 1993; O'Sullivan
and Parrish, 1995). We used the central age of these samples, and for
the remaining AFT samples that passed the chi-square test, pooled AFT
ages are reported (e.g., Sobel et al., 2006a, 2006b). The variable single
grain ages of the AFT samples can be also observed in some other region
of the northern Tibet (Craddock et al., 2014; Zheng et al., 2017; He
et al., 2018; Li et al., 2019; Yu et al., 2019; An et al., 2020).

Thrust footwall samples yield AFT ages that are ≥113 Ma (Fig. 5),
implying that the Paleozoic granites from the central and northern
Qilian Shan have been thermally and tectonically stable since the
Cretaceous. Samples from the hanging wall of range-bounding thrusts
have Cenozoic AFT ages, younger than ca. 52 Ma, with a exception of
sample CQL2016-146(1) with an AFT age of 79 ± 6 Ma (Fig. 5A;
Table 2). These AFT ages suggest that samples have experienced post-
crystallization or post-depositional cooling histories through the apatite
PAZ (Galbraith and Laslett, 1993; Gallagher et al., 1998; Yuan et al.,
2006). AFT age distribution of all the bedrock samples is corresponding

with their structural positions (Fig. 2). The mean track lengths of AFT
bedrock samples ranges from 11.4 ± 1.8 μm (sample LB150912-3) to
13.2 ± 1.8 μm (sample LB150912-7) (Table 3). The vast majority of
apatite track length distributions are between 11 and 12 μm, which
suggests that track lengths in most of the samples have been shortened
by annealing and indicates the samples have been experienced long-
term annealing-related residence in the PAZ, Dpar values are slightly
variable in the analyzed samples, ranging from 1.53 to 2.43 (Table 3).
The dispersion of Dpar values maybe due to a bias in the data collection
for the granitic rocks and heterogeneous chemical composition of the
sandstones (e.g., Craddock et al., 2014; Li et al., 2019).

4.2. Detrital AFT results

The three detrital samples are from Miocene sediments of Suli Basin
(Fig. 3F). The AFT analyses are presented in Table 4, and all samples
exhibit a respectively wide range of AFT ages (Fig. 6A, Table 4). Sample
B1228-1 exhibits a weighted mean AFT age of 90 ± 8 Ma with four
age peaks (early Cretaceous age of 130.3 ± 5.0 Ma, late Cretaceous
age of 84.4 ± 4.8 Ma, early Eocene age of 51.5 ± 3.5 Ma and late
Eocene age of 36.1 ± 4.2 Ma). Sample B1228-4 shows a weighted
mean AFT age of 80 ± 5 Ma with three age peaks (early Cretaceous,
111.0 ± 20.0 Ma; late Cretaceous age, 85.0 ± 10.0 Ma; and early
Paleocene, 63.3 ± 7.2 Ma). Sample B1228-5 yields weighted mean
AFT age of 105 ± 7 Ma with two age population of early Cretaceous
age of 116.0 ± 3.6 Ma and late Cretaceous age of 98.2 ± 7.8 Ma
(Fig. 6A; Table 4). The mean track lengths of these three detrital AFT
samples ranges from 12.9 ± 1.8 μm (sample B1228-1; n = 118) to
13.4 ± 1.6 μm (sample B1228-5; n = 100) (Table 3). Dpar values in
the analyzed apatite grains are with an average value extending from
1.83 to 2.43 μm (Table 4).

We combined the 100 detrital AFT grain ages from these three
Miocene sedimentary rocks into a single dataset and used Radial Plotter
program (Vermeesch, 2009) to evaluate discrete AFT age populations
(Fig. 6B). Four AFT age populations are observed in the diagram with
age peaks of 135.8 ± 7.6 Ma, 91.4 ± 8.5 Ma, 63.5 ± 6.6 Ma and
50.0 ± 8.2 Ma, respectively, which demonstrates the multi-phase
rapid cooling affected the central and northern Qilian Shan since early
Cretaceous to early Cenozoic (Fig. 6B). Sample CQL2017-L5-2 from
Cretaceous strata of northern Qilian Shan yields a dominant AFT age
peak in Miocene age of 18.7 ± 1.5 Ma with some subordinate age
components (Fig. 6C).

Table 3
Apatite fission track analyzed results of bedrock samples from the central and northern Qilian Shan.

Sample ID N ρs (Ns) ρi (Ni) ρd (Nd) P(χ2) Age MFTL No. tracks Average Dpar

(105/cm2) (105/cm2) (105/cm2) (%) (Ma ± 1σ) (μm ± 1σ) (μm)

LB150912-3 32 10.374(2883) 16.704(4642) 9.052(6313) 6.5 114 ± 6 11.4 ± 1.8 101 1.69
LB150912-4 34 4.117(1763) 6.261(2681) 8.671(6313) 22.9 116 ± 6 12.3 ± 1.8 112 1.72
LB150912-7 35 10.553(1914) 16.012(2904) 8.29(6313) 0 113 ± 7 13.2 ± 1.8 103 1.75
CQL2016-146(1) 35 3.753(397) 13.255(1402) 13.734(6039) 86.7 79 ± 6 11.5 ± 2.0 96 2.07
B155-1 35 8.381(1674) 29.222(5837) 9.002(6788) 0 52 ± 3 13.1 ± 1.8 118 2.32
B156-1 35 7.297(1289) 30.123(5321) 9.733(6788) 10.4 48 ± 3 12.7 ± 2.0 120 2.08
B157-1 35 6.573(1680) 28.488(7281) 10.672(6788) 1.3 50 ± 3 13.0 ± 1.9 105 2.43
B163-1 35 8.042(1166) 31.822(4614) 9.315(6788) 10.7 48 ± 3 12.8 ± 2.3 105 2.08
LB150914-4 30 10.717(4271) 45.176(18003) 7.908(6313) 0 39 ± 2 11.6 ± 1.9 107 1.83
LB150912-2 35 2.502(366) 19.464(2847) 9.434(6313) 7.1 25 ± 2 11.8 ± 2.6 101 -
CQL2017-L5-2 35 0.672(252) 5.91(2215) 9.378(5949) 95.7 21 ± 2 12.7 ± 2.1 102 1.53
SQL2017-216(1) 35 2.2(511) 19.976(4640) 7.753(5949) 0 16 ± 2 12.2 ± 2.0 104 1.63
LB150915-1 35 8.432(1637) 79.406(15416) 7.527(6313) 0 16 ± 1 11.6 ± 2.5 101 1.76
WQL2017-170(1) 35 0.899(199) 8.971(1985) 8.403(5949) 100.0 16 ± 1 13.1 ± 1.9 82 1.77
WQL2017-163(1) 35 0.731(183) 9.801(2452) 7.753(5949) 100.0 11 ± 1 12.9 ± 2.0 101 1.57

N: number of analyzed apatite grains; ρs(Ns): spontaneous track density (number); ρi(Ni): induced track density(number); ρd(Nd): track density measured in glass
dosimeter (number); MFTL: mean fission-track length; No. tracks: number of measured apatite fission tracks lengths; (-): not analyzed.
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4.3. Thermal modeling

As the apparent AFT age may not directly relate to specific geolo-
gical event in a complex cooling/tectonic history (e.g., Gleadow and
Brown, 2000), thermal history modeling of the AFT ages and track
lengths is useful to further evaluate the cooling processes. We con-
ducted thermal history modeling of all bedrock samples to explore the
denudation history of the central and northern Qilian Shan.

Three bedrock samples collected from footwall locations yielded
Cretaceous AFT ages. Modeling of these samples reveals cooling in the
late Jurassic to early Cretaceous to the bottom of the AFT PAZ, followed
by thermal stagnation in the PAZ and accelerated cooling at ca. 20 Ma

to the surface (Fig. 7A).
Twelve bedrock AFT samples collected from hanging wall locations

show more variable cooling histories than the aforementioned footwall
samples. Sample CQL2016-146(1) from the hanging wall of the North
Qilian thrust fault experienced Early Cretaceous rapid cooling, sub-
sequent long-term tectonic quiescence in the PAZ, and accelerated
cooling to the surface at ca. 10 Ma. Samples B155-1, B156-1, B157-1
and B163-1 from near Shule Nan Shan thrust fault and sample
LB150914-4 from Tuolai Shan thrust fault underwent a strong pulse of
rapid cooling at ca. 55 Ma, and a final phase of Miocene cooling. Time-
temperature models for samples LB150912-2 and LB150915-1 from
Tuolai Shan thrust fault suggest a reheating event affected the samples.
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Specifically, these samples show cooling to the PAZ by the Eocene,
reheating at ca. ~30–25 Ma, and final ca. 10 Ma cooling. This history is
supported by the tracks length information that show a wide and bi-
modal distribution with a significant population with relatively short
track lengths (≤10 μm) (Fig. 7B; Table 4), which may result from in-
complete annealing of fission tracks during reheating of the samples
within the PAZ. The remaining four hanging wall bedrock samples
(CQL2017-L5-2, SQL2017-216(1), WQL2017-163(1) and WQL2017-
170(1)) show Oligocene fast cooling with a pulse of final cooling since
ca. 10 Ma (Fig. 7B).

5. Discussion

5.1. Thermal and tectonic history of the central and northern Qilian Shan

AFT analyses and thermal modeling suggest that the central and
northern Qilian Shan experienced a complex multi-phase cooling his-
tory through early Cretaceous to the present-day (Figs. 7, 8). Samples

from footwall bedrock yield older AFT ages (Table 3). Their thermal
models suggest a period of Jurassic to Cretaceous cooling and slow
exhumation over the Cenozoic, which indicate that these samples may
have experienced long-term residence in the apatite PAZ through the
late Cretaceous to Cenozoic. Similar observations have been made
elsewhere in the Qilian Shan (e.g., George et al., 2001; Pan et al., 2013;
Qi et al., 2016; Li et al., 2019). Bedrock samples from the hanging wall
display a range of AFT ages (Table 3), and their modeled thermal his-
tories are consistent with variable Cenozoic cooling. Several samples
show bimodal and complicated track-length distributions that suggest
phases of slight reheating, possibly due to thrust burial (Fig. 7B). Fig. 9
schematically shows how several phases of Cretaceous to present
faulting-related exhumation may have resulted in our observed AFT
ages and track lengths.

The first phase of local late Jurassic-early Cretaceous cooling
(Fig. 8A) recorded by our AFT results of bedrock footwall and detrital
samples suggests a period of regional exhumation, which is corre-
sponding with other low-temperature thermochronology datasets
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Table 4
Detrital Apatite fission track analyzed results of Miocene sedimentary samples from Suli Basin.

Sample ID N ρs (Ns) ρi (Ni) ρd (Nd) P(χ2) Age Mixture model peaks ± σ (Ma) MTL
(μm)(n)

Average
Dpar
(μm)105/cm2 105/cm2 105/cm2 (%) (Ma ± 1σ) P1 P2 P3 P4

B1228-1 35 5.252(665) 16.381(2074) 13.057(6313) 0 90 ± 8 36.1 ± 4.2 51.5 ± 3.5 84.4 ± 4.8 130.5 ± 5.0 12.9 ± 1.5(118) 1.83
B1228-4 35 3.553(760) 11.136(2382) 12.295(6313) 4.7 80 ± 5 63.3 ± 7.2 85 ± 10 111.0 ± 20 - 12.9 ± 1.6(89) 2.09
B1228-5 35 2.304(789) 5.13(1757) 11.532(6313) 100 105 ± 7 98.2 ± 7.8 116.0 ± 3.6 - - 13.4 ± 1.6(100) 2.43

Single-grain ages are statistically split into peaks (P1–P4) using DensityPlotter (Vermeesch, 2012). Modeled peak ages (with estimated standard deviations) and
proportions of age components are given. (-) indicates no data.
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across the Qilian Shan (Jolivet et al., 2001; George et al., 2001; Pan
et al., 2013; Qi et al., 2016; Li et al., 2019) and stratigraphic records in
northeastern Qaidam Basin (Ritts and Biffi, 2000; Cheng et al., 2019a,
2019b). This pulse of cooling may be related to the far-field effects of
the closure of the Paleo-Tethys Ocean along the Kunlun-Anyemaqen
suture zone (Pullen et al., 2008; Wu et al., 2017; Cheng et al., 2019a,
2019b) and the collision between the Lhasa Block and the Qiangtang
Block along the Bangong-Nujiang suture zone during Middle Jurassic to
early Cretaceous (Kapp et al., 2007; Gao et al., 2019). The exact driver
of this regional exhumation remains unconstrained, but it is apparent
that it affected much of the Qilian Shan region.

After Mesozoic exhumation, some AFT data from the bedrock
hanging wall samples and combined detrital AFT age distribution of the
three Miocene samples suggest early Cenozoic cooling driven by con-
tractional strain related to the India-Asia collision. Specifically, samples
B155-1, B156-1, B157-1, B163-1 and WQL2017-170(1) from the fault-
bounded Shule Nan Shan and Tuolai Nan Shan display Eocene cooling
signals. Conversely, samples LB150912-2, LB150915-1 and SQL2017-
216(1) from Tuolai Shan show rapid Oligocene cooling that we inter-
pret resulted from fault-related uplift and exhumation (Fig. 8B). We
note that Zuza et al. (2016b) presented a ~51 Ma apatite helium age
from the Tuolai Nan Shan (Fig. 2) that is consistent with these rocks
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exhuming in the early Cenozoic. Thermal modeling of Shule Nan Shan
samples suggest these rocks were exhumed to the PAZ in the early
Cenozoic and have since slowly exhumed toward the surface. Combined
detrital AFT age distribution of Miocene samples shows ~63 Ma and
~50 Ma cooling ages (Fig. 6B), which can also indicate the early
Cenozoic cooling.

Cretaceous sandstone sample CQL2017-L5-2 yields an interesting
thermal history (Fig. 7B) that provides important new insights for the
Qilian Shan. The Cretaceous sediments in this region were deposited in
an extensional setting (e.g., Chen et al., 2003, 2004, 2019b; Zuza et al.,
2019) and no major post-Cretaceous deposits covered these rocks.
Cretaceous strata are not thick enough (i.e., up to 1.4 km thick, Wan
et al., 1989) to bury the analyzed sample to PAZ depths. Therefore the
Cenozoic AFT ages and short track lengths recorded in this sample
(Fig. 7B) implies that it may have been tectonically buried after Cre-
taceous deposition and prior to Miocene cooling. We interpret that after
Cretaceous deposition, this sample was buried by early Cenozoic
thrusting to PAZ depths, and was later exhumed in the Miocene. This
Miocene pulse of exhumation may have eroded the rocks thrust over
Cretaceous strata. There is some field evidence for Paleozoic strata
thrust over Cretaceous deposits (Fig. 2). For example, field observa-
tions, geologic mapping, and seismic reflection profiles reveal early
Paleozoic rocks thrust over Cretaceous strata along the North Qilan
Shan, Yumu Shan, and in the Black River Valley (Fig. 2; Yang et al.,
2007; Chen et al., 2019a, 2019b; Zuza et al., 2016a, 2019).

Most of the analyzed samples show cooling out of the PAZ toward
the surface in middle-to-late Miocene (from ~20 Ma). This period of
deformation may correspond to the reactivation of Tuolai Shan and
North Qilian thrust belt, and the initiation of the western segment of
Haiyuan fault (Fig. 7B). Samples LB150914-4 and WQL2017-170(1)
were collected along the Haiyuan fault in the eastern part of the study
area (Fig. 2). The ca. 16 Ma AFT age from sample WQL2017-170(1)
probably reflects initial activity of the Haiyuan fault (Li et al., 2019; Yu
et al., 2019). Although sample LB150914-4 has an older AFT age (ca.
39 Ma), its thermal modeling suggests ca. 5 Ma rapid cooling from the
PAZ (Fig. 8). Yu et al. (2019) recently published a vertical AFT traverse
from near our sample LB150914-4. The elevation of our sample
(3128 m) fits into their lower observed PAZ, and all samples within this
zone yield 40–50 Ma AFT ages and relatively short 10–12 μm track
lengths. Samples from their traverse collected from higher than 3400 m
yielded AFT ages of ca. 17–15 Ma, which Yu et al. (2019) interpret to
reflect rapid cooling associated with the initiation of the Haiyuan fault.

Therefore, our sample LB150914-4 is consistent with this interpretation
and the ca. 16 Ma AFT age of sample WQL2017-170(1) also verifies the
initiation timing of the Haiyuan fault.

5.2. Kinematic evolution of the Qilian Shan

Based on our new AFT ages and thermal models, we suggest three
phases of cooling in the central and northern Qilian Shan during the
late Jurassic-early Cretaceous, Eocene-Oligocene, and mid-late
Miocene. Most publications focus on the prominent pulse of Miocene to
present cooling in the Qilian Shan (George et al., 2001; Fang et al.,
2003; Palumbo et al., 2009; Zheng et al., 2010, 2017; Lease et al., 2011,
2012a; Wang et al., 2011, 2016a, 2016b; Zhuang et al., 2018; Yu et al.,
2019). However, statistical compilation of published thermo-
chronology, sedimentology, and various other methods data across the
entire Qilian Shan thrust belt show variable cooling ages throughout
Cenozoic (Fig. 10), which represent three dominate pulses of Cenozoic
deformation and exhumation history. The relatively low erosion rates
and limited exhumation magnitude in northern Tibet hinder using low-
temperature thermochronological methods to systematically document
fault activity and cooling history.

Here, we suggest that Cretaceous and early Cenozoic tectonic events
are overprinted and obscured by this obvious major pulse of Miocene
reactivation. Additional evidence for this suggestion, beyond the highly
variable published Cenozoic thermochronology ages (Fig. 10), includes:
(1) our AFT data from Cretaceous sandstone samples which requires
they were buried to PAZ depths prior to Miocene exhumation; (2) high-
magnitude overthrust and nappe structures observed in the north Qilian
Shan and Yumu Shan that placed early Paleozoic rocks over Cretaceous
strata (Yang et al., 2007; Chen et al., 2019a; Zuza et al., 2016a, 2019),
which have since been eroded; (3) kinematic modeling from strain rate
data suggests that more than half of Cenozoic shortening may have
occurred prior to the middle-Miocene (Zuza et al., 2019) given that
India-Asia convergence rates have monotonically decelerated
throughout the Cenozoic (e.g., Molnar and Stock, 2009; Copley et al.,
2010; Clark, 2012); and (4) a Paleocene to early Eocene age to the
Lulehe Formation (Fang et al., 2007; Yin et al., 2007a, 2008b; Ji et al.,
2017; Ke et al., 2013; Lu et al., 2018; Cheng et al., 2018, 2019a, 2019b;
Wu et al., 2019a, 2019b; Nie et al., 2020) with an exception of an
Oligocene age to the formation (Wang et al., 2017), which is the Cen-
ozoic basal formation in Qaidam Basin that presumably records the
initiation of thrust-induced loading around the basin's periphery.
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Early Cenozoic deformation of Qilian Shan thrust belt initiated in
the Eocene along the Qinghai Nan Shan-Zongwulong Shan in the south
(Yu et al., 2017; Zuza et al., 2019) and north-dipping parallel Shule Nan
Shan and Tuolai Nan Shan thrusts in the north (Fig. 2), although the
extent of this deformation is not well contained because of later erosion
or overprinting. Detrital samples in this study and other published da-
tasets also record this early pulse of deformation (Fig. 6B; Jian et al.,
2018; Lin et al., 2019; An et al., 2020), whereas bedrock samples are

generally affected by a Miocene cooling signature. The Miocene to
present pulse of deformation is well documented by the samples from
hanging wall rock bedrock in this study, and also distributed across
most of the Qilian Shan (e.g., George et al., 2001; Zheng et al., 2010,
2017; Wang et al., 2011, 2016a, 2016b; Lease et al., 2012a; Yuan et al.,
2013; Zhuang et al., 2018; Li et al., 2019; Yu et al., 2019) with re-
activation of thrusts and initiation of left-slip Haiyuan fault.

We propose that because shortening strain appears relatively evenly
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distributed across the Qilian Shan thrust belt, as opposed to the
Himalaya where strain is focused entirely on the Main Frontal Thrust
(Lavé and Avouac, 2000; Zuza et al., 2019), one should expect to ob-
serve a single dominant age population in the thermochronology data
across the region. Qilian Shan shortening and exhumation occurs at
similar rates across strike and may be approximated by pure shear in a
vertical northeast-striking cross section (Fig. 11). This predicts that
most samples on the surface today should all yield a similar cooling age
for a given thermochronometric system. Fig. 11 shows a schematic
model for this. The dominant Miocene age (Figs. 8 and 10) only in-
dicates that most rocks at the surface today moved through the PAZ, or
comparable closure temperature window for different systems in the
middle Miocene and samples that would have potentially recorded
older ages have mostly been eroded away. Very few thermochronology
studies reveal a paleo-PAZ (e.g., Zheng et al., 2010; Yu et al., 2019), and
therefore in most cases the magnitude of exhumation remains un-
constrained. Accordingly, observations of dominantly Miocene cooling
may result from a sampling bias in a thrust system that is exhuming
uniformly, and does not require that deformation initiated during this
time. However, some sampling localities from the right structural
context reveal signs of this early Cenozoic exhumation, as detailed in
this study.

5.3. Implications for the Cenozoic construction of the northern Tibetan
Plateau

Contemporaneous early Cenozoic deformation has been observed
across most of the northern Tibetan Plateau (Jolivet et al., 2001; Clark
et al., 2010; Duvall et al., 2011; Zhuang et al., 2011; Y. Wang et al.,
2015; Cheng et al., 2016a, 2016b; Qi et al., 2016; Liu et al., 2017;
Zhuang et al., 2018; and this study), which implies deformation started
in northern Tibet shortly after the initial India-Asia collision at
~55–58 Ma (e.g., Zhu et al., 2015; Hu et al., 2015, 2016). This suggests
that the early Cenozoic deformation jumped to, and reactivated the
mechanically weak preexisting early Paleozoic Qilian suture zone and
related structures (e.g., An et al., 2020; Bian et al., 2020) to quickly
establish the northeastern boundary of the plateau that persisted
throughout the Cenozoic. A relatively stationary and internal deformed
northeastern boundary to the Tibetan Plateau indicates that this region
must has persisted as an out-of-sequence thrust system since early
Cenozoic (Fig. 9), rather than progressively propagating northward
(Zheng et al., 2010, 2017; Yu et al., 2019). On a broader scale, fol-
lowing Eocene-Oligocene deformation along the northern boundary of
the Tibetan Plateau, Miocene deformation jumped back to the Eastern
Kunlun Range during the partitioning of the Paleo-Qaidam basin into
the Hoh Xil and Qaidam sub-basins (Fig. 1; Wu et al., 2019a, 2019b).

This kinematic history, and early Cenozoic deformation in the
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Qilian Shan, suggests plate-boundary stress transferred rapidly across
the Himalayan-Tibetan orogen shortly after India-Asia collision.
Considering restorations of Cenozoic India-Asia convergence (e.g., van
Hinsbergen et al., 2011a, 2011b, van Hinsbergen, 2018; Huang et al.,
2017) suggests that early Cenozoic deformation in the Qilian Shan may
have initiated > 3500 km north of the India-Asia collisional front. This
is at odds with the continuum deformation models (England and
Houseman, 1986; Tapponnier et al., 2001) that predict a steady
northward migration of deformation from the collisional front. Con-
tinuum models would favor Miocene to present growth of the Qilian
Shan thrust belt, with a kinematic evolution that involved foreland
propagation with successive footwall/foreland accretion. However, as
outlined in this study, the Qilian Shan thrust belt did not propagate
northward during the Cenozoic, but instead involved protracted out-of-
sequence development. The ~5–10 km thick undeformed and parallel
Cretaceous–Cenozoic sediments of the Hexi Corridor (e.g., Fang et al.,
2005; Zhuang et al., 2011; Zuza et al., 2016a) confirm that the Hexi
Corridor has remained a relatively stationary foreland to the thrust belt.

In summary, available data is consistent with the Cenozoic Qilian
Shan thrust belt persisting as the stationary northern boundary of the
Himalayan-Tibetan orogen and Tibetan Plateau since the early
Cenozoic (e.g., Clark, 2012). It involved overprinting out-of-sequence
thrusting, and the apparent dominance of Miocene cooling ages may
reflect a biased artifact of relatively homogenous exhumation across the
thrust system.

6. Conclusions

Geologic mapping, field observations, and AFT thermochronology
provide constraints on the complex exhumation history from early
Cretaceous to the present, initiation ages of thrust and strike-slip faults
in the study region, and the multi-phase growth history of the northern
of Tibet Plateau. Below are our primary conclusions:

(1) The central and northern Qilian Shan experienced rapid cooling
history during Cretaceous resulting from a far-field tectonic event,
followed by Eocene-Oligocene thrust faulting and final accelerated
cooling to the surface since ~20–10 Ma.

(2) We suggest that the Shule Nan Shan and Tuolai Nan Shan thrust
faults initiated at ~55 Ma, and the Tuolai Shan fault at ~30–25 Ma.
The initiation of the western segment of the Haiyuan fault occurred
at ca. 16 Ma and reactivation of the proximal Tuolai Shan has oc-
curred since ~10 Ma.

(3) The Qilian Shan thrust belt has persisted as the northern boundary
of the Himalayan-Tibetan orogen and Tibetan Plateau since early
Cenozoic, and underwent out-of-sequence faulting started by
Eocene in accommodating the far-field compressional stress

transmitted from the early Cenozoic India-Asia collision, resulting
in the multiple ranges growth and basins development in northern
Tibetan Plateau.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.tecto.2020.228423.
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